
11 ■ J'1 ■■■■■. i.nmni. I II fl 4lR|PMHVHn^-ll»i|lljemP.K JPJ.ipi J.ll IR^W.I. I I /. .Ml|

Stanford Artificial Intelligence Labbratory
Memo AIM-262 ^

Computer Science Department
Report No. STAN-CS-75-502

July 1975

^

00
©
00
CO

Synchronization of ConCurrent Processes
by

Odd Petters^.

I

/
i

/

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

^D D C

W NOV 5 075 Ijj

B

COMPUTER SCIENCE DEPARTMENT
Stanford University

pp

DETHIBÜTION ^•.y,;,': .■.;'f'"A"

ApfMov« ; (or pub k rtlioa^
Aattibutloe Ualit.atad

^j^W^^^WPl' ■ _-~-mmm ■w»1» * wr l IIMH^WI W^i.Wl.-l

/•

D
a

IT " .:

! u\

t;

^mmwmm^w wwm^mimm

SYr'CHRONIZATION OF CONCURRENT PROCESSES

by

0. Pettersen

Stanford Ur.iversity

Artificial Intelligence Laboratory

ABSTRACT

Th oaoer gives an overview of commonly used synchronization primitives and
literature and presents a new form of primitive expressing conditional critical regions.

A new solution is presented to the problem of "readers and wr.ters . ut.l.z.ng the
DroDo4d synchronization primitive. The solution is simpler and shorter than other known
S'ms The first sections of the paper give a tutorial introduct.on mto establ.shed
methods^ in order to provide a suitable background for the remammg parts.

Key Words and Phrases^^ ^^.^ synchronizationi mutUal exclusion, semaphores,

critical regions parallel programming, multiprogramming, concurrent processes, process
communication, shared variables.

CR Categories: 3.80, 3.82, 4.30, 4.32

Tins rescanh was supported in part by the Advanced Research Projects Agency of the Office of the

Secretary of Defense under contract DAHC 15-73-C-0435.

The vu-w and conclusions contained in this document are those of the author and should not be
Itaprcud as necessarily representing the official policies, eUher expressed or mplud. of the

Advanced Research Agency or the VS Government.

:

:|: PITMMI .iililrcss:
Stanford Artificial Intelligence Laboratory
Computer Science Dept.
Stanford University
Stanford. CA. 94305

A.I(Irr<is «flrr August 1975:
The Technical University of Norway
Div. of Engineering Cybernetics,
7034 Trondheim - NTH
Norxuay

.

mmmm^^w » i i n^^» ,^-.--—-,---•. PWIBi^fl^'TB^WW^ ii'W'.^'M Ufl^ in..« J; ■■."^

1 INTRODUCTION.

i_ rn tn r71 »hat 1h« internal synchronization

betwr^n concurrently executmg Pr0ceS^; '"/ .^^ween th. processes Such synchroniZat,on becomes
pcrtorn.od by the use of •*^%"^X£SSZ^ on the same set(s) of data. Commonly,

^STÄ^Ä Ät ^SÄÄ pessary for proper funct.on.n, of operates on

Mmwlwres and other concurrent *»^£™ZjZ* the ,ntroduct,on of cond.tions for the entry

X^y:^r s;rrt^ r^tri. üäÄ a -« -
concept. « -placed and d,scu^ed by Bnnch-Hanse.,^ and ^ ^^ ^^

This paper will give a short review OT , .^ ^ d wn,ers" problem, has certain undesirable
[4] 10 , .ommoniy encoun,ere ex^ he e s ^and WJJMNr ^p^^ J ^^ ard

Sr^ÄttÄ^^^S? problem A proof of th. so.ution .s ..so .nC.-ed The new
"Ition i, hardly more implicated than .. on. JJJ^^, from th. operB(ing sys,en's viewpoint

A recent paper by Hoare [i 1 on^ider 'h« ^ cn .r^m and writers" pr,b|em. I will

ZZit^tltXt^ZZ'Z'^Z - .i - — - -"•'
•^^rjÄTÄTj^lÄWi**- 1.^«. PASCAL PK ..ich .„d
m [4] and'[11]

2. CRITICAL REGIONS.

„ t „ , set of data W. a section of memory, or r^nS it out. , f **» -m. .me and is

performed th'rough execution of a ^J^^X^TSL need to operate on th. MM set of data.
More than one computational proces W***» ' SToncurrent process modifies th. shared data.

and these executions may overlap in time. 1,
n;';s

a
s

S'°n
hy;^;;;knowing whether read data are "old"

the results will be wrong, because reading J*^"»*^,^ % pr.ve;t SUch harmful simultaneous
or -new" ^e -lution to th. P.0 em is o JJ^^^J ^J^L operations is to let such

operations on shared data. Una wioeiy <"-^ »—au«! reeion"
crmcal operations be performed associated with a cnt^^ c8n ^ ^ ned ,0 some

A critical region of some ^«^ ' ^ *J^" T* time. Diff.r.nt critical r.gions.
afferent parts of different programs. M **>*^W™Z- ~ -** ******. ^^^^:X^:^ tsrrsa «. v. -^^«»^

cor v ! slmrrii T

A critical region is d.fin.d, .nd .nt.r.d by th. notation

(1)
region v do S

wher. s IS , Mi ..»!.<. «rtf «- c*.l «*» 5 - -*« « '•'•"'•",t by •"tl0!i"B

them between Mflu and rnrf.

«MMMMMMMMMMIi ^

m m m •^~" -1 ■'

3. SEMAPHORES.

A semaphore il a shared s.ngle intee.r variable, declared as «OIIOWB in PASCAL:

mr s : semaphore

. i ,^ in ■ ualua Cs determined by the intended type of synchronization. A ,~7ÄÄÄÄ5£Ä 21»— • >« w .nd m**
Their operat.on can be described very simply by:

wait(s):
ttet-ti
u lulr s < 0 <fo SUSPEND;

(2)

signal(s): (3)
s:=s»l;

Th« use of th.s can be demonstrated by the followine example, borrowed from [2^
A «mmun-catfon buffer I. orgam.ed as a c.rcul.r linked list of fr.m... .t U.st 2 fr.m.. lonf. Two

pointers indicate:

F The first empty frame to insert a message into
R The frame before next frame from which a message is to be withdrawn.

A function. ^^^^J^^X^ neither overflows nor underflow.. Th. latt.r

^:Ä tc^^re^ly^aÄ^'LoL JUl^ ^ con.tantS and
londitions L: fram* = Cframe - buffersize. and ready - Cready ■ 0. and F • .uec(R).

The two programs could be:

deposit:

decop.

wait(frame);
buffer[F] :« message;
F :■ succ(F);
signaKready);

wait(ready);
R :» succ(R);
received := buffer[R];
signal(frame);

(frame:

ready:

Fig. i

The operations on semaphores may be visualized as follows:

 X

^
0

Crrady

Cframe

J • i lim'iliiailrtiiil—i ■ -■ '■■ MM^MrtMMMIIMfeMMaia

ppw» --—■

- 4

l

Ihr Iwo pointer'; r.hown md.c.to tho posi'jons a<Ur on« deposit more than the number o« «cepts
„„t^Uy. the pointer, ore located at Cframe and Cready It to easy to see that deposit can be traversed
Levrri times l,e Cframe times) betöre congests occurs, and accept must be activated. Unt.l then, the
LeiUfrmw) operation will not activate SUSPEND. Similarly, as long as accept lags behind deposit,
siEnll(.r.i.lv) will have been traversed more than wait(ready), consequently ready > 0 However as soon as
MM moro Vccept is attempted, ready will become -I, and the further processing wi I be deferred

• As Cready mentioned, the semaphore operations waitls) and signal(s), or at least parts of them, must
hn mdm^blo Otherwise, if for example two different processes simultaneously were performing the
on^ln ' -I on "he same variable s. the result could be **) - s(KH or s(K.2) - s(K)»2, dependmg
on tho .ubitrary interleave of the basic primitives constituting the operation s :» s«I. The correct result of
n operations, obviously, should be s(Mn) - s(K)-n. but, if these n operations are .rb.lrary interleaved m
limT the result may be anything between s(k) and the correct one. The problem is resolved by ensuring
that tho wait(s) and signal(s) operations are indiv.sable. This preserves the integrity

If the operat.ons wait(s) and signal(s) themselves are not mdmsable, then the consistence is
preserved by performms the operations on semaphores within critical regions, which, by definition, are

mdivisable ,
The two programs of the example should then be modified to:

deposit: rrpion v tio wait(frame);
buffer[F] := message;
F := succ(F);
rrcinn v do signal(ready);

accept: r+gUm v i» wait(ready);
R := succ{R);
received :- buffer[R];
rtgimn v rio signallframe);

An alternative way of expressing essentially the same would be to require the wait and signal
.ul.roulines to be handled by a scheduler (monitor), for example like [11]. Also then, however some
mechanism must be provided to ensure the integrity, for example by granting monitor access to only one

process «it a time

4. CONDITIONAL CRITICAL REGIONS

Conditional critical regions represent a method to synchroniie mt.r«clin| processes, more advanced
than those methods explained in the previous paragraphs. ,u i- nt a.

As suggested by Brinch-Hansen [4], regions could be made conditional by changing the form (1) to

rrßinn v when B do S

with the symmetrical complement:

rrnion v do S nwnit B

Tho first form allows the program to enter its critical region v. I^condition B does not hold, the critical
region will be exited immediately. The article calls it "busy waiting . indicating that the program wi I oop
iMliftg for the condition B to occur. This "busy waiting" is obviously a great disadvantage. Fortunately, it
can very easily be avoided, as will be explained later in this paragraph.

The complementing construct (5) causes statement S to be executed, and then further execution of
tho process to b* delayed, until condition B becomes true.

Apparently, conditional critical regions are quite different from semaphores and unconditional critical
rpoions It is then appropria.e to ask: what are their relative advantages, and when is the one method
bol'tor -uitod than the other? As Brinch-Hansen has discussed in [4], semaphores are well suited for simple
cases -nd conditional critical regions superior when the synchronization structure is more complex.

To demonstrate the difference, paper [4] gives two solutions to the so-called readers and writers
problem one with semaphores and unconditional critical regions, and one with cond.tional critical regions.

(5)

-- ■- -- - ■ .■—.

■■■

- 5-

4.1. The "readers and writers" problem.

The "readers and wrilers" problem tend« to become a claisieal •xample, and hat appeared in
several papers, as for example [4], [5], [6], [9], [10], [11]. It wa« apparently mentioned first by Courtoi«
et al in [6] It is stated as follows:

Several writers are depositing messages into a buffer, from which several readers will read.
Any number of readers may access t ie buffer simultaneously, but a writer shall have exclusive
access Further, writers have priority over readers.

Several possible solutions exist. One of the simplest encoui tered is Brineh-Hansen's solution with
conditional critical regions in [4] Although his solutions represent a somewhat simplified example, this fact
does not affect the ability to compare the two synchronizing concepts. It is shown in [4] that conditional
critical regions give a far simpler solution than the use of only semaphores. The solution presented in [4]

is:

(leclaTnticn.
rar v : sharrd record rr, aw : integer md

reader
rrainn v when aw « 0 rfo rr :• rr ♦ 1;
read;
rf/?i<)ii v do rr :* rr - 1;

writey
rrcinn v do aw :« aw ♦ 1 owoil rr«0;
wnto;
rrgion v <fo aw :« aw - 1;

where the identifiers are:

h

V

rr
aw

is the critical region
denotes number of "running readers"
indicates the number of "active writers", i.e.
actually writing.

writers that have been granted access or are

In his later work [10], Brinch-Hansen uses a somewhat different form, apparently as an effort to
eliminate certain undesired effects. This will be discussed later in this paragraph. For our purpose here, to
explain the operation of conditional critical regions, the earlier form is chosen, since this it more similar to
the form I will propose in the following.

Unfortunately, as pointed out by the authors of [6], Courtois, Heymans, and Parnas, in • comment [5]
to Brinch-Hansens article [4], Brinch-Hansens simple solution it incorrect, or hat at least certain

undesircablc effects: , _
As far as the algorithm is concerned, the order of admitting waiting readers and writers into the

critical region is quite unpredictable. Thus, it is possible that a writer may wait indefinitely during a stream
of incoming readers. This conflicts with the requirement of priority for writers. Paper [5] points out the
error in [4] but gives no solution, other than referring again to the solution in [6], with semaphores.
Another consequence, but not mentioned i [5], is that rc^ioM-ealls from outgoing readers (second
rrÄion-call) may well be blocked from the region by a burst of incoming readers, thut preventing the
number of "running readers" to be counted down.

..., ...^..^„....^^-t-i. -■■■ ■ ...^ !-.■ . ..>-. -

WP^^"-^*" IHIJI"üI t.w&*wmm IMHH ii m.^^mrm^*

4.2. Discussion of undesirable effects.

It r. not mentioned in [4], but H seems necessary fo requ.re the dispatcher to release reg.on v at
IK. JrZT* the await function Otherwise, a deadlock will occur: The controlled variable of B is a
S 7 ^hiP changed by some other computational process. This operation will usually be placed within
jlTil :I; re^on vTere not re^ased. no ofher process could enter it. and cond.tion | would rema.n false

,0r ^^ut one could ask: Could not the operation on the controlled variable of B be performed outside
..^ No that would only exceptionally be possible. Generally, that would contradict the purpose of

rerMon <? N°; ha J°uld ^ '^ 'n0M .rrors, due to uncontrolled interleave of operations on

z:^:::^^'^^^ '^ * B 5a *"•< —^H wou,d ,mp-de ,he "-^
^TlZZ ^ZSt^X^^rk *. ^ region should * released upon

'^"TheT no "iTol remains for keeping the nu.U function linked to the „«ion call of form (5). They
should be separated, making them two individual statements:

(6)

(7) and

rrniiin v >ln S

mi nil B

Statement (6) .s identical to the original unconditional rtgh* call, of form (1 . This splitting would
Drov,de 0*7 c «Led flexibility, since ,t would permit the use of the .u,«.. function more freely. One
oiHtruo that the linking to the rrBiou call has the advantage that the nu.aU function can more easily be

could a^7' 7,'^ '^'^ 0
0) the *Un „II, so that the dispatcher will not re-enter the process again.

"H^H! ,on B h be ome trurwth two separate statements. * extra and thus unnecessary operating
"/"r. a n^ur I Consequence. Howeve'r. it should be a trMal task for a moderately intelligent
2Ä t 'ecogmze conseq'utive r,Bin„ and n.nU statements, thus elim.n.tmg th. superfluous

^r■p^dl^,"^,^^^^1-" - "^^" --- — 'v srscompe,ed ,o;,b^ , .ft.nn^i Locesses This conflict can only be resolved by some dispatchmg program, usually a

S7Ä irC^^"^^ s ^resien sta,emen, (4) i8 h8nd,e.d as; cavR
o ,he

SiLch.r which generaJy enters the call into a queue. It should, then, be very easy to .mplement B as a
Vn'd on or leaving the queue. Thus, the calling program is completely inact.ve. until the operating system

^ ^^S^iti'JX^ir^ — .-. *
L i. TA,-h!, H. .ko »ims (0 hay. lri.<l to •void 11» Marwl <l.o<lloek o(his oU,«i., His

^ STvtrtSzJS.izrz** •««-'■ ■ -«*-1

critical region call, to:

(8)
rrginn v do hegin awnit B; SI wd

cooperating with an unconditional region call like (1):

rrßinn v do 52

whnc S2 is supposed to alter condition B. This looks like a deadlock again, referring to the definition of
Tnti al re- ons The author circumvents this by defining a special .rmp.r.ry release of region v while the
i" proems s awaiting for condition B. thus allowing the second process to alter B. Th.s temporary
rof^^r however ins.de hcain and nd of region v. and this seems rather unlog.cal. It seems unlikely to
äSTlÄ ki^d of "opTralion'from merely reading th. program text, and it gives an unclean internal
operation of the dispatcher, manipulating th. calling program from th. mam qu.u. and ov.r to another,

temporary queue.

(9)

■ *=■■-. •■ i-nr—' -.-■..-■—...^ ■ ■ - -" ■' -- '—- • - - - -- --■■— - ---

mmimmmm'imi^m^^^r^-

- 7 -

A remark in [1 1] points out, that trdnsfurnng the responsibility for Ustmt of condition B ov©r to th«
monitor or dispatcher may impede the efficiency, because expression B must be re-evaluated after every
exit from I procedure of the monitor There mitht even be several similar expressions throughout the
proprom that required similar re-evaluation. Fortunately, this can be improved considerably. Firstly,
effic'iency can be improved by the user himself, by applyinf only simple condition« a« B, liKe X • specified
mfpper boo ■ true etc The second approach to improvement requires some explanation: The inefficiency
ii hardly Imked to u/i.-rr a testing is effected, whether this is in the application program, or within the
OMratin« -./-.tem In any case, this is basically "husy waiting" An alternative to testing of condition B inside
tho mom'tor it to onter the function (wait or region) itself, and perform the teatmg there. This busy
waitino" is de'mitely no more efficient than doing it inside the monitor. Considerable higher efficiency can
be obt'amed bv another and different approach: ...

The compiler could generate a list for each procedure, containing controlling variables of wait
and conditional critical regions, affected by the particular procedure, together with references to
the wait and region functions At each procedure exit, only the conditions for the wait and region
functions referred to in the list should be re-evaluated

More philc-.ophically, one might perhaps say, that there are totally three different methods to effect an
action upon the occurrence of a certain condition or event:
. Interrupt generated by the event.
» "Busy waiting" with repeated testing.

Prior to run-time, prepare a list showing functions affected by a change of value Of a variable
within a certain code body, like a procedure. At run time, this list provid«s the ability to refer
actions directly, rather than testing the conditions from .he opposite direction.

4.3. Conditional critical regions with priority.

So far nothing really new has been mentioned about critical regions. I have merely explained certain
consequences and restrictions of methods published earlier, although these restriction« do not seem to have
been fully recognized in the published articles. „ .^ t , . .u

It seems now appropriate to propose a form of conditional critical region call« that ha« none of the
defects mentioned above The new form is simple to use and to understand, because it is natural and
directly attacks the problem, besides it should give a very efficient code.

The new form introduces priority into forms (4) and (6) above and comprise« three «y«tem call«:

rrrJ"" v:=p u lion B Ho S
rrßion v:sp do S
nivnil B

(10)
(11)
(12)

Corresponding to the remarks about flexibility of await B, form (7), the await function can arbitrarily
be use-) in connection with the conditional (10) or unconditional (11) region call.

The new element, p, is an integer or integer expression denoting the relative priority for granting
the region among competing programs. The assignment v:.p is not effected until the critical region is
entered and the scheduler should arrange the queue of requesting access to the region, according to
dccrcasins values of p, such that that one with the highest value will be picked first. The result is a
selection according to relative priority. The value of p must be defined before use, and dynamic priority

should be easy to apply. , „ s ■ »u
Naturally, only p-values belonging to calls within the queue are considered, and call« entering the

queue iilfpr a region is entered will be queued normally and only considered after the region is released,
■even if tho priority of the process currently in the region has lower priority than the approaching process.
Although this non-preemptive intetpretation of priorities should be quite self-evident, it is mentioned here,
to emphasize the fact before starting proving ihe algorithms in the next section.

With this method, the "readers and writers" problem has a solution that i« simpler than o.her
solutions frequently encountered in the literature, besides it has none of the defect« cited In «ection 4.5, I
will present an efficient and simple solution to a new version of the problem, presented m [11J.

. -^^ ■ I ^ ■ ■■ ■■ ■ • ■ ^■■■^..-.■^-—-.-^W

^■!^pp»,/W--Hwii,i* iwfimpmim

TIM solution to MM oricmal vers.on ol th« probl.m is:

dedatttiw: . , .
, nr v : nharrd record rr, «w I int«g«r end

inltinl imlufi
aw:=0; rr:=0;

>,■■!.•./(•'

r^.-.n v := 1 MAM awOrforr :«rr ♦ 1;

r»ad;
rrainu w :* 2 do rr :* rr • I;

rrciou v := 2 when «w « 0 rfo aw :• 1;
r/lrrrM rr=0;
write;
aw I« 0;

c Ik. <0rmS (10) and (11) ar. similar to (4) and (5), it should not be surprismg to find the ^
so,ut,on%7te,lrtVt1h0.)o:edplanted -n W So.. sign.ic.nt ditt.r.nc.s e.st. however:

TU „,n»ram «or readers deviates only in the inclusion of priorities.
: in ;Pe Pr^l for w'^r a new condHion U.n aw-O is mcluded. m.KinB the reg.on call W

to that of the readers^ need ^ have va|ues d|<<erent

^STTl^^™*™^ S-! b. adequ.U. provided the lan6uaRe .^

Z't^ZL aw:=0. terminating the wr.t. statement, need not be performed inside the crit^.l

region.

4,4. Proof of correctness of new solution for "readers and writers" problem.

Let us use the following defimt.ons of "acliv." and "running" process, slightly modified fron> [AJ,

A process is active from th. moment its request of a resource is acknowledged, unt.l th«

n^JÄl from th. instant it ha. b..n giv.n p.rmi.sion to us. th. r.sourc. until .t

is released.

The definitions can be visualized:

request acknowlocged

request

permission to use
resource

1
release

time

K—
running ^

■ctiv.

Fit 2.

■~:, ..^.... ,. >,. .. i .>:.-. .^ . -.^ , M-tyi,^ ^•■■' -•- —...-J... ..^,.J.;j>^/ L ^.. ^,.. -■■ —-.-. - .. - - - •■ -- —•-—'

T*!- minmmmm^^'mmm^mfw-

- 9 -

Um r^spoct to HM programs for reader, and wnt.rs, acl,v. .nd runn.nß proc««. Ml

A reader ü IKttPt «rom the moment ,1 has entered Ml ree,on v betor. re.d.r.g until it has left
^"on v aHer r,adln8 A reader * r.nmng from the moment M leaves r.81on v b.lor. r..dmR(

r^raÄ^Ä « has en.ered * re.on v ^or. wr^nj. unt-l -t has
1" ted statement aw.O after wntine. It .s runn.n^ from the .n.t.nt M ha. .nd.d th. avmt
3on and .s to start wntmg. unt.l it has executed statement awr-O after wr.tr.g.

,„ „dd^on to ident.f.ers mtroduced earher, the follow.n6 MMUif IS used in the proof:

rw the number of running wnters, according to definition above.

The proof will follow these lines:

, A ,et of enter., is established, believed to constitute sufficient conditions for th. proof to b.

complete
2 A sot of lemmas is established
3 Based on the lemmas, each criterion is shown to be satisfied.

CRITERIA FOR CORRECTNESS OF PROGRAMS:

Cl

C2

C3
C4
C5

Mutual exclusion of running processes follows two invariants:
XI = (0<rw<l) lor: XI « ((rwO) v (rwl)))
X2 ' -(rr>0 A rw^O)

Xi and X2 are both invariant true.

^y^^^i»-;!^^^. but as soon as a writer has applied for access,
Several readers can be active simuna y, prevented. Running readers

Z'"Z'«Z"u,. *MM m MWMM MmM «Mi kr m oi *m* mMtm.

KÄTÄ^^W* "- K—I -—» '*'" •""••-' in""'ci,,y ^C2>

. ■ --- ^.. .--.^ ■-*■ ■ ^■«•'■-■■-■--.-.. Ja... ^-^A.^. . .. -.-,. ■■- ■ ■ ^ ^ ,—■J.>^: . ..- — ^.^.^^M*^*!.*,**^.*.**^—^r^A <

mm t^ifmmmmn 11 JM u . '—'

- 10

I t

LEMMAS:

LI
L2

L3

14

L5

L6

L7

L8.

L9

L10.

Lll

rr^'SÄ1^^'J ^' 'h,d" ma'n8 "8'0"

,ct,ve. i... w W" «*» •""" ,lh9 ""*'' V' ,,.„,„, .w:.0, ttm wr.l.rS c.n only b. in«»»«

Bee»--. .' »- ■ """""I [2« ""„PL ...n . 1 b. ...ain.d, H '»'"»' •««" ,''". "«*2 r^nivÄ ^i'Si-tr— »*-»". - K— «-^
operator-, are executed m a finite ^ ,„ b. performed by an act.ve writer Since
A'blocKi.g o incoming readers, -J8 ^s a

8-ln6 writer will be granted access to v

coming wrters have ^JZiTtT*** P****** ^^ ,Ur,her ,nCOm,nS ,eade
e before any ncommg readers so that aw 1 w y ^ (nconf,)ng processes,

w*,| be con.dered Then, further ^s ,0 ^ Thu an incoming wnter may be delayed in
Z tho blc.King mentioned in L8 wi 1 be « - 've Th s^ mm* ^ ^ ^ y

Ms await-f. Ktion. but it *"\'*™,\h*' ^ e ha, the "blocKmg" ot incoming readers w.ll be
,rue, as st.>ed m L8. H is also '-^ ^»J^J^ , (ng and executed aw.O. and this can only
etfecMve urt.l the activ. writer has ^™]™^J0^ ,he necessity ot rr=0. Thus, the

S-o~ ÄÄ- ^ «- - ^COünted down ,0 rr=0•
rÄ^HI. . ».so active. ... state ^ ^ - - ^ ^^ ^
invariant true:

Y = (0<r v<aw)
The Boolean X2 can be changed to:

"r^O implies rr^O mi rw^O implies rw.O. Thus
X2 » (mO) v (rw-O)

•*>" —m~ mv^mmmi^^mm

11

PROOFS:

PI

P2

P3

P4

P5.

as only possible values

P6

Boc^e of Lemma L5, stat.ng that aw can only a.ta.n the values 0 or 1. invariant Y Ue. L10)

fives immediately
f 0 I

rw = t I i
This proves invariant XI in Cl.

P;00,H0, f.ouVThe'proof to complete M we can show that either rr-O or rw-O. Th. program
for: 2 how ' ccorTn o the Sef.mt.on for runnmg w-iter.. that when . writer is running.

e af er h^e P^I "-'< -=0. then rr=0. Th,s must last at least until th. wr.ter to no leaser
actiT*™ -Jo blocKs incoming readers, accord.ng to L9. When a wnter I. runnmtl then

rw/0, by definition
This shows that either:

rr = 0 or rw = 0
wn.ch implies X2 = (rr\0) v (rw^O) is mvanant true.

This complete. 'he Pr00'f^j ed in p, and P2. XI expresses that only one writer can be
T "IVar; ,me Even tronger L5 sUtes that only one wr.ter can have access (i.e. be active)
irrtT^e L9 ^tes th .; thl/'ac^ss of incoming readers is blocKed when a reader is active.
Is lemma furthlrstates that the active writer becomes running when .11 runnmg readers have

terminated Thus. C2 is satisfied.
Proof of C3:

LZ^d wiSS ™JZ££!t rr and aw. The buffer I, changed only by a wnter. when it
^running We"ave already proved (P3) that when th.s occurs, no other process h« access to

the buffer This completes the proof of C3

Sn^^eswy «Ä for deadlocK ,s that a program holds resources while waiting for other
program: to release resources If this is proved not to be true then deadlock w.ll not occur.
Kurses common to the program, and of sigmf.cance for the deadlocK problem:

XlZltoJUtZ*'* Tco^ition for proceeding is at the MM* rr-O in th. writer's program^At
m Point' the wnter ,s neither m the rogion, nor is aw any condit.on (or th. .x.cut.on wh.ch
i J, t« ,r-n Thue lha waitinE for rr=0 will not induce deadlocK.

v Access o reeron v can be cenied, either because the region is gr.nt.d to some other rtthn V! fc"s ,0 re^on v ca J. other ocesSi ^ ^ never ^

rr0C0
(r^f aw ra wnter mus' boVtive. and then aw:=0 remains to b. don.. Since we have

Z° a awat rr.0 w' no nvolve deidlocK. the writer will proc.d normally, and finally
shown that a!'8l*h

r
u
r;0th;

,l w
n
a

0
lt|n. for awso will not cause deadlocK. This shows that th. cited

ÄÄ^^ÄS S not satisfied. DeadlocK is pr.v.nt.d. and crit.rion C4 is

satisfied. ,

^i:s^;irrt ^^;:r;;^Ä y****?^ ^ * *. **
tha? p°2 for writers and p-l for readers. Thus. C5 .s sat.sf.ed .mmed.at.ly.

This completes the whole proof

._. M ^^_

•mmmmmmmmmvimmmmjmmamm

' -' ''">iiii>i<«Vi>tm«r i -- ■Ji

w^mmm^m*mmm*rmm*'^m^*mmmmmF*ß*mmi^i'm ■"— HIHIi m\i^m^m^m^^mm^9^imm^fm w,'fm^mm".v^m

- 12 -

4.5, A solution to a modified version of "readers and writers".

Hoare, in [11], has presented a slight modification of the "readers and writers" problem:
The writers have priority over readers, at originally. However, readers waiting at the end of a
write are given priority over the next writer. The purpose is to avoid the danger of indefinite
exclusion of readers, in a burst of successive writers.

A simple solution of this, applying the method of conditional critical regions with priority, is

presented without a formal and complete proof:

dtfUtrniion:
i m v : sUnrrii rrrorH rr, aw : integer rnd

iniliaf tuilufs.
aw:-0; rr:«©;

rcaili
rrpiitu v := 1 dii;
rrpion v := 3 uhcn aw = 0 do rr := rr ♦ 1;
read;
rrpiou v ;= 4 (fo rr := rr - 1;

writti
rr-ion v :s 2 uhm aw « 0 do aw :« 1;
niMlll rr=0;
write;
aw := 0;

TMa '.olution appears simpler than that in [11] which, moreover, does not deal with the contention

problem at all
Wheh comparing with the solution of the original problem, shown in section 4.3, one note

immediately the following details:

* The increase of the highest priority, that one of outgoing readers, from 3 to 4. This should make
no difference, since it is the highest priority in each case.

* The "writer"'s program is unchanged.
« "Reader"'s program is extended with a preceding region call, without action statement.
« Following the first region call for incoming readers is the conditional region call, as originally.

However, the prior.ty is increased beyond that of the writers.

Region call of priority 1 has the same purpose as that of the original solution: Preventing the
continuation m the program if a reader arrives to this point simultaneously with a writer being on the point
of cntermr, the region. Then, the writer will prevail. After the writer has left the region, the reader will
continue but will be suspended in the next region call, waiting for aw=0, as previously.

If a reader arrives slightly before a writer, the reader will enter its region the first time. After this
point, it is guaranteed to continue, also into the next entry of the region, despite the waiting writer,
bec.-i'-.e of The higher priority 3. Thus, the two region-entries will not be separated, and the reader is
allowed iu continue until termination, together with other active readers, before the write is acknowledged
Reader'-, arriving later must first e^ter region v with priority 1, however, and this is prevented at this time
by the ponding writer, which will IM granted access first. This separates incoming readers into two groups:
Thoce who have not entered th^ region the first time: these must wait until the writer has changed aw,
upon whfeh they will be trapped at the next entry of the region. The other group consists of those having
arrived before the writer; these will continue until termination,

While a writer is active, readers may freely enter region v the first time, since this is unconditionil
Then, they will wait for aw=0. Assuming that another writer arrives together with readers during a write,
the situation is, at the instant when the active writer terminates: Pending readers applies for region v with
priority 3 and thus dominates the waiting writer. Possible new readers, however, having yet not entered
the region the first time, will be delayed, because of the low priority »1, until the writer has passed the
region At this time, however, aw=l and the new readers must wait until completion of the writer

- ^- ■■--' ■ -:- ■■■■■- - • ■■•■■' —- —... T..- -.i— :' • ■ ■ *■ ■ ■ ■ ■- • ~ •^- — ■*

l|p^liy^^pMi.wii.i.n.i, — .^L»i ;w wmm.i ■m*>i"itmt'*mu9vt •^w«*nw'..ip>' >- IP pnp*«« 11

-13-

Cmmrn***, also this »im. m have eff.ctiv.ly s.p.rai.d applying r.ad.rs mto two croup*: Tho,. who
enlo^d durmg the prev.ous writ., and tho« arriving att.r. Th. .ff.ct ,. as r.qu.r.d.

•

5.

[1]

[»]

[»]

[1]

w
n
[HJ
[9]

[10]
[H]

REFERENCES

Dnksi,.., K.W.: Cooprrann,- Srqumnal Prorc.SSrS. In Programming Languages (F. C-nuys .,1),
Ar.ulctnir I'r.^, NY. W.H, p|>. ■'..'»-112. Bg,, . .»t..
H,,!.,,,,,....,, A.N.: Synrl„o„l/,..t,o,, of CommunTalmg ProrrSSnS. Comm. 4CM II. I (March 97J,

^.,11! C.A.K.: Toward a UMO.V of parallni ,.roKramMung. International Seminar on Operating
Svi.Vmi TfC/imjun. Belfast, Norlhrrn Irrland, Aug.-Scp. 1911.
iVnn. h-Man-M, P.: A Co,npar,.on of Two Synchronmng Concepts, /(c^ /n/ormar.ca I (1972), pp.

Coitus, Hey.nnns and Varnas: Comments on "A Companson of Two Synchron.x.nß Concrpls".
Acta Injormatica 1 (1972), pp. 37S-,176.
r.o..r,o,s, Hevnans ami Parnas: Concurrent control w.th 'Readers and Wr.tcrs . Comm. ACM

C^V^lTZ^n. OPKHAT1NC SYSTEMS THtOKY. Prent.ce-Ha.i. N.J. 1973. pp.

W.VtU.: The proKramm,n« lan«uaKe PASCAL Acta Informatica Ml«") »■ 35-63.
CriffillM, P.: SYNVKR: A System for the Automat.c Synthese and Venf.cation of Synchronous
Processes'. Proc. ACM'74 pp. 167-173.
Hr.nch-Hansen, P.: Operatmg System Prmcplts.Prenl.ce-Hall 1973.
Hoarc, C.A.R.: Mon.lors, An Opcralmg Systems Structur.ng Concept. Comm. ACM U, 10 (Uct.

-7^), pp. 5+9-5S7.

*

« ■■■IN»' I . " " V~-J' ■~^- - J ■■
■ - ^ ■■ ■ ■ -■ ^ ^..^ -^

TP-P. "■' mm mm •"*• ' ■' "« ' ■'■ " 1 ■" ' H»IPtW!lpw~><WW»IP"

UNCLASGIl'IEi

SECURITY CLASSlFlCAT.ON OF THIS PAGE r^T"»! D»l« h.nleredl

(!■

RF^ORT DOCUMENTATION PAGE
1 REPORT NUMBER

STAN-CS-75-502

2. GOVT ACCESSION NO

«. TITLE CanJ Sub(/(/eJ

U*
SYNClfflONIZATION OF CONCURRENT PROCESSES^

READ iMSTRUCriONS
BEFORE COMPLETING FORM

3, RECIPIENT'S CATALOG NUMBER

»I TYPE OF REPORT J» PERIOD COVERED

technic

7. AUTHORr«)

oyTPettersen

if (3-
9 PERFORMING ORGANIZATION NAME AND ADDRESS

Computer Science Department
Stanford University-
Stanford, California 9^305

10. PF .
AREA ft WORK UNIT NUMBER*

^«ARPA 0rder<j^l. 2^94

II, CONTROLLING OFFICE NAME AND ADDRESS
Col. Dave Russell, Deputy Director ARPA/IPT f//
ARPA Headquarters
1400 Wilson Blvd., Arlington, Va. 22209

Ü MONITORING AGENCY NAME & ADDRESSf/f dillsrml from Controlling Oflice)

ONR Representative: Philip Surra
Durand Aeronautics Bldg., Rm. l6b
Stanford University-
Stanford, Ca. 9^305

8 eOHTI»*»T-OJtaBA*I MlttinFBUl -•'

»ROGRAM ELEMENT, PR0JECT,^7%SK

»OUT B<^e "y

—^ga —^- ^- -
13 NUMBER OF PÄ6ES / \ —'i y

i5 (-<J/6
IS. SECURITY CLASS, fof (h(

UNCLASSIFIED
iSa, DECLASSIFICATION DOWNGRADING

SCHEDULE

16 DISTRIBUTION ST AT EMEN T fof f(./s Repori;

Releasable without limitations on dissemination.
/

17 DISTRIBUTION ST ATEMEN T (W (he «bsfracf en(ered in B/ock 20, II dillerenl Irnm Report)

?

c

18. SUPPLEMENTARY NOTES

19 KFY WORDS (Toritinue un reicr»» side il nrcttaary and Identity by block number)

Scheduling, process scheduling, synchronization, mutual exclusion,
semaphores, critical regions, parallel programming, multiprogramming,
concurrent processes, process communication, shared variables.

20 AifeTRACT 'C\«i(fnui

'''The paper |
uo on rrvana »id« (/ necesaafy and Identity by bloc* m mberj

paper gives an overview of commonly used synchronization primitives
and literature, and presents a new form of primitive expressing
conditional critical regions. J, ,

A new solution is presented to the problem of ''readers and writers , ,
utilizing the proposed synchronization primitive. The solution is simpler
shorter than other known algorithms. The first sections of the paper give
tutorial introduction into established methods, in order to provide a
suitable background for the remaining parts,

and
a

DD ,: FORM AN 73 1473 EDITION OF I NOV 65 IS OBSOLETE
*

Of/ /oo
I UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE flfhen Dafa Enlared;

■ ■■|l I ■■■ ■■ ^■^■■^»- Hp^wmppwmww^winip]- 111^« .<*' p' >wiw" ■ ^JTBHW^^W—'v^w* 'A'M

c"mTV CLA^C*T,OH OF TH.S PAOEfHT.^ gg. En,.,.*

SEC
UR.TY CLASSIFICAT.ON OF THIS PAGEfWh.,. D,t. Bnl.fd)

■ - - ■—- ■ - - - .-.-^ ■ .-....■ .— ■-^,. . ■ .. .* —j—_^_^^^^ai

